Dataset TA Rihan Farih Bunyamin - CSM
Berikut ini adalah tabel lengkap dari dataset Tugas Akhir "Perhitungan Initial Basic Feasible Solution Pada Transportation Problem dengan Menggunakan Cost Supply Method (CSM)"
Video Pengerjaan : https://youtu.be/rBPzbL0wvRo
No |
Referensi |
Nama TP |
Ukuran TP |
Nilai Optimal |
Matriks |
1 |
(Ramadan, 2012) |
N01 |
3x3 |
5600 |
[Cij]3x3
= [32 40 120; 60 68 104; 200 80 60] [Si]3x1 = [20 30 45] [Dj]1x3
= [30 35 30] |
2 |
(Samuel, 2012) |
N02 |
3x4 |
28 |
[Cij]3x4
= [1 2 3 4; 4 3 2 0; 0 2 2 1] [Si]3x1 = [6 8 10] [Dj]1x3
= [4 6 8 6] |
3 |
(Imam et al., 2009) |
N03 |
3x4 |
435 |
[Cij]3x4
= [10 2 20 11; 12 7 9 20; 4 14 16 18] [Si]3x1 = [15 25 10] [Dj]1x4 = [5 15 15 15] |
4 |
(Kaur et al., 2018) |
N04 |
3x5 |
1580 |
[Cij]3x5
= [6 4 4 7 5; 5 6 7 4 8; 3 4 6 3 4] |
5 |
(Ahmed dkk., 2016) |
N05 |
4x4 |
410 |
[Cij]4x4
= [7 5 9 11; 4 3 8 6; 3 8 10 5; 2 6 7 3] |
6 |
(Ahmed dkk., 2016) |
N06 |
3x4 |
2850 |
[Cij]3x4
= [3 1 7 4; 2 6 5 9; 8 3 3 2] |
7 |
(Das et al., 2014) |
N07 |
3x4 |
1160 |
[Cij]3x4
= [6 1 9 3; 11 5 2 8; 10 12 4 7] |
8 |
(Jude, 2016) |
N08 |
3x4 |
190 |
[Cij]3x4
= [5 7 9 6; s6 7 10 5; 7 6 8 1] |
9 |
(Hakim & Khatun, 2017) |
N09 |
4x4 |
111 |
[Cij]4x4
= [4 6 5 2; 6 4 1 4; 5 2 3 1; 4 6 7 8] |
10 |
(Amaliah et al., 2019) |
N10 |
3x4 |
910 |
[Cij]3x4
= [20 2 20 11; 24 7 9 20; 8 14 16 18] |
11 |
(Amaliah et al., 2019) |
N11 |
3x4 |
2460 |
[Cij]3x4
= [10 2 20 22; 12 7 9 40; 4 14 16 32] |
12 |
(Amaliah et al., 2019) |
N12 |
3x3 |
291 |
[Cij]3x3
= [7 8 7; 18 8 12; 8 12 12;] |
13 |
(Juman & Hoque, 2015) |
N13 |
3x3 |
4525 |
[Cij]3x3
= [6 8 10; 7 11 11; 4 5 12] |
14 |
(Juman & Hoque, 2015) |
N14 |
3x4 |
920 |
[Cij]3x4
= [4 6 8 8; 6 8 6 7; 5 7 6 8] |
15 |
(Ahmed, Khan, Uddin, et al., 2016a) |
N15 |
3x4 |
156 |
[Cij]3x4
= [4 6 9 5; 2 6 4 1; 5 7 2 9] [Si]3x1 = [16 12 15] [Di]1x4 = [12 14 9 8] |
16 |
(Amirul Islam et al., 2012) |
N16 |
3x3 |
131 |
[Cij]3x3
= [4 8 11; 6 3 8; 7 6 5] [Si]3x1 = [12 10 9] [Di]1x3 = [13 8 10] |
17 |
(Ahmed, Khan, Ahmed, et al., 2016) |
N17 |
5x7 |
1900 |
[Cij]5x7
= [12 7 3 8 10 6 6; 6 9 7 12 8 12 4; 10 12 8 4 9 9 3; 8 5 11 6 7 9 3; 7 6 8
11 9 5 6] [Si]5x1 = [60 80 70 100 90] [Di]1x7 = [20 30 40 70 60 80
100] |
18 |
(Uddin et al., 2016) |
N18 |
3x5 |
290 |
[Cij]3x5
= [4 1 2 4 4; 2 3 2 2 3; 3 5 2 4 4] [Si]3x1 = [60 35 40] [Di]1x5 = [22 45 20 18 30] |
19 |
(Uddin & Khan, 2016) |
N19 |
4x4 |
285 |
[Cij]4x4
= [5 3 6 10; 6 8 10 7; 3 1 6 7; 8 2 10 12] [Si]4x1 = [30 10 20 10] [Di]1x4 = [20 25 15 10] |
20 |
(Uddin & Khan, 2016) |
N20 |
3x4 |
450 |
[Cij]3x4
= [1 2 1 4; 4 2 5 9; 20 40 30 10] [Si]3x1 = [30 50 20] [Di]1x4 = [20 40 30 10] |
21 |
N21 |
4x6 |
112 |
[Cij]4x6
= [9 12 9 6 9 10; 7 3 7 7 5 5; 6 5 9 11 3 11; 6 8 11 2 2 10] [Si]4x1 = [5 6 2 9] [Di]1x6 = [4 4 6 2 4 2] |
|
22 |
(Rafi & Islam, 2020) |
N22 |
3x4 |
12075 |
[Cij]3x4
= [11 13 17 14; 16 18 14 10; 21 24 13 10] |
23 |
(Kaur et al., 2018) |
N23 |
3x4 |
23 |
[Cij]3x4
= [7 2 3 7; 1 5 4 5; 7 2 4 5] |
24 |
(Hosseini, 2017) |
N24 |
3x4 |
3460 |
[Cij]3x4
= [20 22 17 4; 24 37 9 7; 32 37 20 15] |
25 |
(Morade, 2017) |
N25 |
3x3 |
820 |
[Cij]3x3
= [50 30 220; 90 45 170; 250 200 50] |
26 |
(G.Patel et al., 2017) |
N26 |
4x5 |
490 |
[Cij]4x5
= [20 4 6 8 9; 4 10 8 18 8; 9 11 20 40 6; 7 6 9 14 16] |
27 |
(Uddin et al., 2016) |
N27 |
3x3 |
555 |
[Cij]3x3=[6 4 1; 3 8 7; 4 4 2] [Si]3x1=[50, 40, 60] [Dj]1x3=[20, 95, 35] |
28 |
(Kaur et al., 2018) |
N28 |
3x5 |
40 |
[Cij]3x5=[2 7 8 8 3; 5 6 5 5 6; 5 7 8 8 3] [Si]3x1=[2 3 5] [Dj]1x5=[3 1 1 2 3] |
29 |
(Kousalya1 & Malarvizhi, 2016) |
N29 |
3x4 |
3857 |
[Cij]3x4
= [15 1 42 33; 80 42 26 81; 90 40 66 60] |
30 |
(Ahmed et al., 2015) |
N30 |
3x3 |
465 |
[Cij]3x3
= [13 21 14; 8 12 21; 15 17 19] [Si]3x1 = [13 20 5] [Di]1x3 = [12 15 11] |
31 |
(Sahito, 2021) |
N31 |
4x5 |
1670 |
[Cij]4x5
= [4 4 9 8 13; 7 9 8 10 4; 9 3 7 10 6; 11 4 8 3 9] |
32 |
(Pandian & Kavitha, 2019) |
N32 |
3x3 |
348 |
[Cij]3x3
= [10 15 12; 6 7 9; 7 4 12] [Si]3x1 = [16 14 18] [Di]1x3 = [24 14 10] |
33 |
(Ezekiel & Edeki, 2018) |
N33 |
3x4 |
1140 |
[Cij]3x4
= [8 6 3 9; 2 6 1 4; 7 8 6 3] |
34 |
(Sahito, 2021) |
N34 |
4x5 |
510 |
[Cij]4x5
= [7 6 4 5 9; 8 5 6 7 8; 6 8 9 6 5; 5 7 7 8 6] |
35 |
(Uddin et al., 2016) |
N35 |
3x4 |
149 |
[Cij]3x4
= [6 3 5 4; 5 9 2 7; 5 7 8 6] [Si]3x1 = [22 15 8] [Di]1x4 = [7 12 17 9] |
36 |
S1 |
p44haris |
4x5 |
1380 |
[Cij]4x5
= [7 8 7 10 22; 11 8 12 14 31; 10 12 12 8 32; 14 10 13 5 35] |
37 |
S2 |
p43cia |
3x4 |
1375 |
[Cij]3x4
= [7 2 10 4; 12 6 3 9; 11 13 5 8] |
38 |
S3 |
Dewangga |
3x3 |
620 |
[Cij]3x3
= [3 5 2; 4 9 7; 7 8 10] [Si]3x1 = [30 50 20] [Di]1x3 = [10 60 30] |
39 |
S4 |
p41_yusran |
3x4 |
996 |
[Cij]3x4
= [17 8 11 9; 18 9 14 26; 18 14 14 10] |
40 |
S5 |
p42_yusran |
3x4 |
420 |
[Cij]3x4
= [11 2 5 3; 12 3 8 20; 12 8 8 4] |
41 |
R1 |
Real 1 |
2x94 |
12928429 |
[Cij]2x94 = [22
38 32 17 31 15 23 25 25 20 33 30 18 12 23 18 26 20 15 18 15 25 28 23 16 18 21
28 20 20 25 18 18 18 25 27 21 25 23 26 33 38 29 17 38 17 39 39 22 22 35 25 28
31 33 20 36 31 23 27 25 35 30 31 28 27 28 30 27 54 43 52 56 46 59 53 40 58 44
51 40 43 45 49 48 57 46 46 60 61 66 59 55 56; 26 41 36 21 35 20 27 30 28 25
38 34 23 15 20 15 23 18 14 17 13 23 25 25 17 23 23 33 18 19 28 23 20 18 25 31
20 25 25 23 39 36 28 12 33 14 38 38 20 28 33 28 26 28 31 17 38 30 30 25 22 33
26 29 31 34 28 33 31 49 38 49 52 43 56 49 36 54 40 46 36 39 41 46 44 54 41 43
57 57 62 55 52 51] [Si]2x1 = [308252 138801] [Di]1x94 = [3852 4759 1312 3451 7537 2827
3878 15224 2530 5690 2494 2383 32901 7314 2486 0 249 2735 498 1989 4475 6091
373 5492 17978 4305 23799 1597 2773 2556 48509 3279 4183 1303 795 4024 1381
2597 1666 4848 125 0 0 10192 0 4475 3356 0 2611 2984 1368 0 1119 249 0 9447
2984 2362 125 2984 26599 746 249 0 14055 1437 2283 556 812 5786 2034 5911
5026 524 1133 464 1792 1330 1457 1668 3827 7947 297 759 9074 1436 864 2217
1160 519 4166 614 19405 30392] |
42 |
R2 |
Real 2 |
2x94 |
13657053 |
[Cij]2x94 =
[22 38 32 17 31 15 23 25 25 20 33 30 18 12 23 18 26 20 15 18 15 25 28 23 16
18 21 28 20 20 25 18 18 18 25 27 21 25 23 26 33 38 29 17 38 17 39 39 22 22 35
25 28 31 33 20 36 31 23 27 25 35 30 31 28 27 28 30 27 54 43 52 56 46 59 53 40
58 44 51 40 43 45 49 48 57 46 46 60 61 66 59 55 56; 26 41 36 21 35 20 27 30
28 25 38 34 23 15 20 15 23 18 14 17 13 23 25 25 17 23 23 33 18 19 28 23 20 18
25 31 20 25 25 23 39 36 28 12 33 14 38 38 20 28 33 28 26 28 31 17 38 30 30 25
22 33 26 29 31 34 28 33 31 49 38 49 52 43 56 49 36 54 40 46 36 39 41 46 44 54
41 43 57 57 62 55 52 51] [Si]2x1 = [341015 138738] [Di]1x94 = [3332 3976 1252 3494
9871 3027 5214 20029 2437 5584 2615 2184 39154 6641 2735 0 249 2984 746 2238
4848 6837 373 4677 17447 4487 24968 1804 3137 2538 50087 3445 4375 1444 919
4024 1389 2960 1660 5221 125 0 0 11063 0 4972 3729 125 2859 5096 1492 0 871
249 125 10129 3232 2735 249 12554 28961 746 125 0 12664 1382 2405 479 724
6258 1924 5195 5217 536 924 385 2053 1111 1340 1712 3630 8300 321 679 8954
1385 862 2372 1225 480 4369 556 20814 27658] |
43 |
R3 |
Real 3 |
2x94 |
12296587 |
[Cij]2x94 =
[22 38 32 17 31 15 23 25 25 20 33 30 18 12 23 18 26 20 15 18 15 25 28 23 16 18
21 28 20 20 25 18 18 18 25 27 21 25 23 26 33 38 29 17 38 17 39 39 22 22 35 25
28 31 33 20 36 31 23 27 25 35 30 31 28 27 28 30 27 54 43 52 56 46 59 53 40 58
44 51 40 43 45 49 48 57 46 46 60 61 66 59 55 56; 26 41 36 21 35 20 27 30 28
25 38 34 23 15 20 15 23 18 14 17 13 23 25 25 17 23 23 33 18 19 28 23 20 18 25
31 20 25 25 23 39 36 28 12 33 14 38 38 20 28 33 28 26 28 31 17 38 30 30 25 22
33 26 29 31 34 28 33 31 49 38 49 52 43 56 49 36 54 40 46 36 39 41 46 44 54 41
43 57 57 62 55 52 51] [Si]2x1 = [280110 138801] [Di]1x94 = [3300 4628 1250
2852 8202 2916 3912 16157 2695 5526 2699 2271 41855 7074 1616 0 125 1741 373
1243 2859 3854 249 5151 17117 4368 24291 1560 2679 2952 42223 3585 4182 1423
838 3282 1491 2324 1553 3108 125 0 125 6464 0 2859 2238 0 1616 2921 871 0 498
125 0 6091 1865 1616 125 2921 17029 498 249 0 13885 1516 2480 410 799 6616
1980 5900 4721 584 1032 419 1702 1290 1536 1725 3455 7792 341 632 9100 1269
897 2333 1296 452 3957 487 20317 32228] |
44 |
R4 |
Real 4 |
2x94 |
14117586 |
[Cij]2x94 =
[22 38 32 17 31 15 23 25 25 20 33 30 18 12 23 18 26 20 15 18 15 25 28 23 16
18 21 28 20 20 25 18 18 18 25 27 21 25 23 26 33 38 29 17 38 17 39 39 22 22 35
25 28 31 33 20 36 31 23 27 25 35 30 31 28 27 28 30 27 54 43 52 56 46 59 53 40
58 44 51 40 43 45 49 48 57 46 46 60 61 66 59 55 56; 26 41 36 21 35 20 27 30
28 25 38 34 23 15 20 15 23 18 14 17 13 23 25 25 17 23 23 33 18 19 28 23 20 18
25 31 20 25 25 23 39 36 28 12 33 14 38 38 20 28 33 28 26 28 31 17 38 30 30 25
22 33 26 29 31 34 28 33 31 49 38 49 52 43 56 49 36 54 40 46 36 39 41 46 44 54
41 43 57 57 62 55 52 51] [Si]2x1 = [350910 142165] [Di]1x94 = [3512 4300 1291
3477 9394 3031 4597 22500 1776 5384 2824 2530 42638 7341 2735 0 249 2984 746
2238 4848 6837 3737 5858 16806 4210 24717 1715 2549 2520 50440 3185 4359 1437
914 3120 1551 2109 1578 5345 125 0 0 11187 0 4972 3729 125 2859 8452 1492 0
871 249 125 10317 3232 2735 249 8452 29085 746 373 0 13607 1421 2068 554 877
6207 1844 6259 4824 610 1175 403 1840 1110 1389 1739 3546 8113 348 753 8366
1329 970 2121 1181 530 3778 497 19912 34947] |
45 |
R5 |
Real 5 |
2x94 |
14017419 |
[Cij]2x94 =
[22 38 32 17 31 15 23 25 25 20 33 30 18 12 23 18 26 20 15 18 15 25 28 23 16
18 21 28 20 20 25 18 18 18 25 27 21 25 23 26 33 38 29 17 38 17 39 39 22 22 35
25 28 31 33 20 36 31 23 27 25 35 30 31 28 27 28 30 27 54 43 52 56 46 59 53 40
58 44 51 40 43 45 49 48 57 46 46 60 61 66 59 55 56; 26 41 36 21 35 20 27 30
28 25 38 34 23 15 20 15 23 18 14 17 13 23 25 25 17 23 23 33 18 19 28 23 20 18
25 31 20 25 25 23 39 36 28 12 33 14 38 38 20 28 33 28 26 28 31 17 38 30 30 25
22 33 26 29 31 34 28 33 31 49 38 49 52 43 56 49 36 54 40 46 36 39 41 46 44 54
41 43 57 57 62 55 52 51] [Si]2x1 = [359746 138801] [Di]1x94 = [3269 4456 1277
2783 8888 3679 4621 18426 2745 5940 2408 2437 48268 5585 3108 0 249 3356 746
2486 5594 7707 373 4944 19086 3758 27005 1884 3139 2275 48013 3411 4479 1386
911 3405 1402 3198 1657 5967 249 0 0 12678 0 5594 4226 125 3232 7955 1616 0
995 373 125 11560 3605 3108 249 7955 32938 871 249 0 13500 1377 2189 589 752
5974 1588 6085 4578 512 1056 452 2240 1138 1268 1818 3634 8274 300 703 8162
1308 901 2438 1088 454 4199 613 19521 29812] |
Komentar
Posting Komentar